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A B S T R A C T

The hippocampus is a plastic brain structure that has been associated with a range of behavioral aspects but also shows vulnerability to the most frequent neuro-
cognitive diseases. Different aspects of its organization have been revealed by studies probing its different neurobiological properties. In particular, histological work
has shown a pattern of differentiation along the proximal-distal dimension, while studies examining functional properties and large-scale functional integration have
primarily highlighted a pattern of differentiation along the anterior-posterior dimension.

To better understand how these organizational dimensions underlie the pattern of structural covariance (SC) in the human hippocampus, we here applied a non-
linear decomposition approach, disentangling the major modes of variation, to the pattern of gray matter volume correlation of hippocampus voxels with the rest of
the brain in a sample of 377 healthy young adults. We additionally investigated the consistency of the derived gradients in an independent sample of life-span adults
and also examined the relationships between these major modes of variations and the patterns derived from microstructure and functional connectivity mapping.

Our results showed that similar major modes of SC-variability are identified across the two independent datasets. The major dimension of variation found in SC runs
along the hippocampal anterior-posterior axis and followed closely the principal dimension of functional differentiation, suggesting an influence of network level
interaction in this major mode of morphological variability. The second main mode of variability in the SC showed a gradient along the dorsal-ventral axis, and was
moderately related to variability in hippocampal microstructural properties.

Thus our results depicting relatively reliable patterns of SC-variability within the hippocampus show an interplay between the already known organizational
principles on the pattern of variability in hippocampus’ macrostructural properties. This study hence provides a first insight on the underlying organizational forces
generating different co-plastic modes within the human hippocampus that may, in turn, help to better understand different vulnerability patterns of this crucial
structure in different neurological and psychiatric diseases.
1. Introduction

The hippocampus is a complex, phylogenetically preserved brain
structure, located within the medial temporal lobe. Characterizing its
functional pattern, multiple studies have demonstrated its involvement
in different domains of human behavior including memory functions
(Bonnici et al., 2013; Eichenbaum, 2004; Maren and Holt, 2000; Stella
and Treves, 2011), spatial navigation (Chersi and Burgess, 2015),
emotion (Plachti et al., 2018; Strange et al., 2014) and creative thinking
(Chersi and Burgess, 2015). The variety of tasks and behavioral domains
that are associated with this phylogenetically old brain structure hence
demonstrates its crucial role in the whole cognitive system.

Neurobiologically, hippocampus’ direct and indirect connections to
cortical and subcortical structures place it at the cross-road of informa-
tion transfer between distinct brain regions and as an important
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component of the brain’s large scale networks (Clawson et al., 2019;
Dalton et al., 2019; Mitra et al., 2016; Ward et al., 2014). Accordingly,
hippocampal alterations are reported within the most frequent neuro-
degenerative and psychiatric diseases, such as Alzheimer’s disease (Allen
et al., 2007; Halliday, 2017), schizophrenia (Lieberman et al., 2018),
depression (Fateh et al., 2019; Kemmotsu et al., 2013) and anxiety (Cha
et al., 2016) disorders where changes in its functional and morphological
properties are linked to symptom severity and progression of the disease.

Within healthy individuals, the hippocampus structure is known to be
very plastic exhibiting one of the most unique phenomena of the adult
mammalian brain, namely, the development of new neurons throughout
the life span (i.e. neurogenesis). Presumably partially related to this
unique property, at the macroscopic level, plastic changes within the
hippocampus are documented based on in-vivo MRI measurements. For
example, it has been shown that taxi drivers with expert navigation
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abilities have lager posterior hippocampi than controls and bus drivers
(Maguire et al., 2006). In addition to these experience-based morpho-
logical changes, in-vivo dynamics of microstructural integrity of the
hippocampus have been demonstrated in association with sex-hormones,
at much shorter time scales (Barth et al., 2016).

These structural changes in the hippocampus arise from variation at
its local microstructural organizations. Nevertheless, considering the
tight integration of hippocampus within the large scale brain networks
and its high degree of structural, as well as functional, connectivity
(Maller et al., 2019) with other brain regions, the observed morpholog-
ical plastic changes could also be accounted by system-level interactions
of the hippocampus with distinct brain regions.

As far, two organizational patterns have been proposed in the hip-
pocampus. The first one is based on the long history of cytoarchitectonic
mappings, evidencing reliable boundaries based on microscopic features,
such as somatic size, shape and size (Andersen et al., 2007; Duvernoy,
2005), subdividing the hippocampus into different subfields. The hip-
pocampal subfields spatially span along the proximal-distal axis, which is
represented along the medio-lateral and the ventro-dorsal axes, in the
rolled-in, volumetric representations (Fig. 1-A). In parallel, in-vivo ex-
aminations using electrophysiological recordings and task activations, as
well as studies assessing connectivity patterns of the hippocampus, have
suggested an organization along the anterior-posterior axis (Colombo
et al., 1998; Prze�zdzik et al., 2019; Strange et al., 2014).

In the recent years, many studies of the hippocampus have begun to
focus more on this later organizational dimension. Multiple lines of ev-
idence in animals and humans support the existence of such organiza-
tional pattern and its relevance for behavioral functions. In particular, it
has been shown that the hippocampal projections to cortical and
subcortical structures follow a graded pattern of connections changing
gradually along its longitudinal axis (Strange et al., 2014). Also, gene
expression studies have demonstrated a molecular gradient along the
longitudinal axis, which is linked to distinct functional networks in the
brain, each showing preferential vulnerability to different neurodegen-
erative conditions (Vogel et al., 2019). Interestingly, association with
behavioral functions in the hippocampus have also shown a gradual
change along the longitudinal axis (Plachti et al., 2018). According to
these accumulating evidence, unlike the cytoarchitectonic organizational
pattern, which is mainly related to local microscopic tissue properties,
the longitudinal organizational pattern is driven by cortical and
sub-cortical interactions of the hippocampus, demonstrating its tight
integration within the large scale functional systems, enabling the hip-
pocampus to sub-serve broad behavioral functions.

Data-driven approaches to parcellate the hippocampus based on its
Fig. 1. Map of hippocampal cytoarchitectonic differentiation (Amunts et al.,
2005) (A). Clustering of hippocampus from (Plachti et al., 2018), based on its
pattern of resting-state functional connectivity, showing differentiation along
the longitudinal axis but also a medial and lateral differentiation within the
intermediate clusters (B). CA: cornu-ammonis; DG: dentate gyrus;
Sub: subiculum.
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connectivity profiles with the rest of the brain have demonstrated a
differentiation in the connectivity patterns along the longitudinal axis,
subdividing the head and tail of the hippocampus from more interme-
diate sections. In addition, the intermediate clusters are also separated
into medial and lateral clusters (Plachti et al., 2018) (Fig. 1-B). Strikingly,
the existence of such medial-lateral clusters in addition to the general
pattern along the anterior-posterior axis of the hippocampus might be
indicative of multiple superimposed organizational forces coming from
innate microstructural characteristics (such as cytoarchitectonic and
myelin features), as well as interaction with other brain regions. Such an
interplay between long-range connectivity and local microstructural
properties were demonstrated recently by Vos de Wael et al., identifying
two main axes of functional connectivity transition within each of the
hippocampal cytoarchitectonically-defined subfields. In particular, while
the first axis demonstrated a gradual anterior to posterior transition of
functional connectivity patterns with the rest of the brain, the second axis
followed closely the distribution of myelin markers in most subfields.
These results demonstrate the existence of overlapping functional orga-
nizational patterns, within each hippocampal subfield, presumably sha-
ped by both, long-range connections as well as, the underlying
microstructural properties.

Research on the dynamic properties of hippocampal structure and its
morphological alterations in association with learning, aging, neurode-
generative diseases and its vulnerability to factors such as stress and
hormonal alterations has a longer history than MRI-based functional
evidence of a longitudinal gradient. However, as far, an integrative view
on the existence and interplay between different organizational forces,
shaping hippocampal structure and its morphological dynamic proper-
ties, is crucially lacking. Characterizing the major dimensions shaping
the structural aspects of the hippocampus can open new perspectives to
better understand the multifaceted role of the hippocampus in the
complexity of the human cognitive systems, hippocampus’ plasticity, as
well as population’s patterns of interindividual variability and, vulner-
ability to neurodegenerative diseases.

To identify and disentangle the major organizational modes of the
hippocampal macrostructure, in the current study, we leveraged high-
resolution multi-modal neuroimaging from the openly accessible HCP
dataset. We examined hippocampal voxels with regards to their struc-
tural co-plasticity with the rest of the brain. We hence characterized the
main dimensions of variability across hippocampal voxels with regard to
similarity of their whole-brain structural covariance patterns. The
thereby derived estimates of co-plasticity are called structural covariance
(SC) and reflect the degree of co-variability in the structural properties of
each hippocampal voxel with all other gray matter voxels, across a large
group of individuals.

Previous studies have revealed the existence of multiple highly
reproducible co-plastic networks consisting of distinct regions across the
brain within cohorts of healthy individuals. Regions belonging to the
same co-plastic network are suggested to demonstrate similar vulnera-
bility to disease processes. Accordingly, pathologic conditions such as
different types of neurodegenerative diseases, primarily affect regions
that belong to the same co-plastic network (Evans, 2013; Seeley et al.,
2009; Zhou et al., 2012). By definition, structural covariance is based on
the similarity of the macrostructural variations (Mechelli et al. 2005;
Alexander-Bloch et al. 2013) and thus is primarily influenced by factors
influencing underlying structure, such as expression of common genetic
cues during early development of the cortex (Raznahan et al., 2011) and
direct structural connectivity through monosynaptic connection (Yee
et al., 2018). Nevertheless, within healthy individuals, the co-plastic
patterns also resemble functional networks derived from resting-state
functional connectivity (RSFC) analysis, suggesting that the structural
covariance also arises due to network mediated plasticity – as a result of
plasticity-related changes at the synaptic and cellular levels (Evans,
2013). RSFC reflects the intrinsic patterns of signal co-fluctuations be-
tween two distinct regions and hence presumably functional interaction
between regions. The structural properties of the regions that
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demonstrate such functional coupling, co-vary to a high degree together
as well (Alexander-Bloch et al., 2013a), hence conceptually linking RFSC
and structural covariance networks (Kotkowski et al. 2018). In sum,
structural covariance is assumed to reflect common influences of certain
factors on microstructure, be it synaptogenesis based on functional syn-
chronous firing, connectivity as direct monosynaptic connection, gene
expression in synapses development, or similarities in the local
micro-architectonic properties. In the current study, we use the infor-
mation from this multi-facet covariance pattern to disentangle major
dimensions of variability of the hippocampal co-plasticity.

In the first step, across a group of young participants from the HCP
cohort, we identified the patterns of structural covariance of each voxel
within the hippocampus and all none-hippocampal gray matter voxels.
The similarity of the structural covariance patterns of every pairs of
hippocampal voxels were then summarized in an affinity matrix. This
latter was further decomposed into its major components using a diffu-
sion map embedding approach (a non-linear manifold learning technique
(Margulies et al., 2016)). In brief, the algorithm estimates a
low-dimensional embedding from a high-dimensional similarity matrix.
Within each new dimension, the voxels with more similar pattern of
structural covariance are closer together and the voxels at the opposite
ends of the gradient have the most different structural covariance pat-
terns. Compared to other nonlinear manifold learning techniques, the
algorithm is relatively robust to noise and computationally inexpensive
(Tenenbaum et al., 2000).

Importantly, we assessed the replicability of these structural gradient
patterns in an independent dataset. To further interpret these organiza-
tional axes, we assessed spatial similarity of major dimensions of struc-
tural covariance with variations in local microstructural properties,
approximating myelin destitution, as well as cytoarchitectonic distinc-
tions across the hippocampus. Furthermore, to investigate the relation-
ship between structural and functional organization patterns within the
hippocampus, major modes of variations in the functional connections
and co-activation patterns of the hippocampal voxels with the rest of the
brain were derived using the same decomposition approach.

Our analysis revealed a principal gradient of structural covariance
that followed the hippocampal longitudinal axis and corresponded to the
main dimension of functional connectivity variation in the hippocampus.
The second gradient, demonstrated a dorsal-medial organization, and
was moderately associated with the spatial distribution of proxy mea-
sures of myelin in hippocampus. It also showed a moderate link with
cytoarchitectonic classifications, suggesting a partial link between this
second dimension of structural covariance and the hippocampal innate
microstructural properties.

2. Methods

2.1. Participants

The participants of the main analysis were selected from the publicly
available data from the Human Connectome Project (HCP; http://www.h
umanconnectome.org), consisting of young healthy adults. HCP com-
prises data from 1113 individuals (656 females), with mean age of 28.8
years (standard deviation (SD) ¼ 3.7, range ¼ 22–37). The full set of
inclusion and exclusion criteria are described elsewhere (Glasser et al.,
2013; Van Essen et al., 2013). Here we selected a subset of unrelated
individuals from this cohort, consisting of 377 individuals (age: 28� 3.6,
192 female), with good quality structural and four available resting-state
functional scans.

For replication sample, healthy adult participants from the enhanced
NKI (eNKI) Rockland cohort (Nooner et al., 2012) were selected. We
focused only on participants for which good quality T1-weighted scans
were available. Exclusion criteria consisted of alcohol or substance
dependence or abuse (current or past), psychiatric illnesses (eg. Schizo-
phrenia) and current depression (major or bipolar). Furthermore, we
excluded participants with bad quality of structural scans after
3

pre-processing, resulting in a total sample of 468 healthy participants
(age: 48 � 19, 315 female).

2.2. MRI acquisition and preprocessing

2.2.1. Structural MRI
MRI data of the main sample (HCP) were acquired on the HCP’s

custom 3T Siemens Skyra. Two T1w images with identical parameters
were acquired using a 3D-MPRAGE sequence (0.7 mm isotropic voxels,
TR¼ 2400ms, TE¼ 2.14 ms, flip angle¼ 8�; iPAT¼ 2). Two T2w images
were acquired with identical geometry (TR ¼ 3200 ms, TE ¼ 565 ms,
variable flip angle; iPAT ¼ 2).

The imaging data of the eNKI cohort were all acquired using a single
scanner (Siemens Magnetom TrioTim, 3.0 T). T1-weighted images were
obtained using a MPRAGE sequence (1 mm isotropic voxels, TR ¼ 1900
ms; TE ¼ 2.52 ms).

2.2.2. Rs-fMRI
Within the HCP cohort, four rs-fMRI scans were acquired using multi-

band accelerated 2D-BOLD echo-planar imaging (2 mm isotropic voxels,
matrix ¼ 104x90, 72 sagittal slices; TR ¼ 720 ms, TE ¼ 33 ms, flip angle
¼ 52�; mb factor ¼ 8; 1200 vol/scan). Participants were instructed to
keep their eyes open, look at fixation cross, and not fall asleep.

2.3. Image processing

2.3.1. Structural MRI
Both datasets were preprocessed using the CAT12 toolbox (Gaser and

Dahnke, 2016). Briefly, each participant’s T1-weighted scan was cor-
rected for bias-field inhomogeneities, then segmented into gray matter
(GM), white matter (WM), and cerebrospinal fluid (CSF) (Ashburner and
Friston, 2005). The segmentation process was further extended for ac-
counting for partial volume effects (Tohka et al., 2004) by applying
adaptive maximum a posteriori estimations (Rajapakse et al., 1997). The
graymatter segments were then spatially normalized into standard (MNI)
space using Dartel algorithm (Ashburner, 2007) and further modulated.
The modulation was performed by scaling the normalized gray matter
segments for the non-linear transformations (only) applied at the
normalization step. While this procedure ignores the volume changes due
to affine transformation, it allows preserving information about indi-
vidual differences in local gray matter volume. In other words, it
re-introduces individual differences in local gray matter volume removed
in the process of inter-subject registration and normalization. Finally, the
modulated gray matter images were resampled to a voxel resolution of 2
mm isotropic.

2.3.2. T1-weighted over T2-weighted ratio
For each individual, the bias-corrected T2-weighted images were co-

registered to the individual’s T1-weighted scan using a rigid-body
transformation model. The ratio of the two scans (T1w/T2w) is then
generated for each individual and warped to the standard (MNI) space
using deformation fields, calculated from application of Dartel algorithm
on the participant’s T1-weighted data. The warped T1wT2w-ratio maps
were also resampled to a voxel resolution of 2 mm isotropic.

2.3.3. Rs-fMRI
Pre-processed resting-state timeseries were downloaded from the

ConnectomeDB (https://db.humanconnectome.org). Briefly, for each
participant, the timeseries were corrected for gradient nonlinearity, and
head motion was corrected using a rigid body transformation. The geo-
metric distortions were corrected using the R-L/L-R blipped scan pairs.
Distortion corrected images were warped to T1w space using a combi-
nation of rigid body and boundary-based registrations (Greve and Fischl,
2009). These transformations were concatenated with the transformation
from native T1w to MNI152, to warp functional images to MNI152. After
removing the bias field, brain extraction and normalization of whole

http://www.humanconnectome.org
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brain intensity was done. A high-pass filter (>2000s
full-width-half-maximum) corrected the time series for scanner drifts.
Further noise was removed using the ICA-FIX procedure (Salimi-Khor-
shidi et al., 2014). Finally, the preprocessed resting-state scans, with a
voxel resolution of 2 mm, were smoothed with an isotropic gaussian
kernel of 5 mm (full-width-half-maximum).

2.4. Hippocampal volume of interest (VOI) and gray matter target

We defined our VOI as a consortium of the cytoarchitectonic maps,
available in the SPM Anatomy Toolbox 2.0 (Eickhoff et al. 2005), and the
macro anatomically-defined Harvard-Oxford Structural Probability Atlas
(http://neuro.imm.dtu.dk/wiki/Harvard-Oxford_Atlas) (Desikan et al.
2006). The hippocampal formation included the following subfields:
CA1–3, dentate gyrus, and subiculum. In addition, by thresholding
average of the modulated gray matter images from the HCP cohort to
values above 0.2, a whole brain gray matter mask was generated. The
aforementioned hippocampal VOIs are further restricted by this gray
matter mask. The total number of voxels in a 2 mm� 2mm� 2 mm space
in the right hippocampus was 771 and that of the left hippocampus was
756 voxels.

Furthermore, as target mask for covariance (structural/functional)
analyses, the hippocampal VOIs were dilated by 8 mm (isotropic) and the
resulting regions (both the left and right dilated-hippocampal VOIs) were
excluded from the above-mentioned thresholded whole-brain gray mat-
ter mask. This procedure aims to diminish the possibility of mixing of the
signal from the hippocampal voxels in the target, which my otherwise
occur, for example as a result of smoothing. The remaining gray matter
voxels (including cerebral and cerebellar, as well as subcortical gray
matter) were used as target mask.

2.5. Hippocampal connectivity analysis

2.5.1. Structural covariance
Within each cohort, structural covariance (SC) was measured by

computing the Pearson’s correlation coefficient between gray matter
volume values of the hippocampus’ VOI voxels (seed voxels per hemi-
sphere) and all other brain gray matter voxels across the whole sample.
This procedure yielded one seed-by-target structural covariance matrix,
at the group level, for each of the hippocampal VOIs (i.e. one pre
hemisphere).

To reduce noise and increase between participant overlap of gray
matter structures, in particular in the highly folded cortical regions, the
target voxels were selected frommodulated gray matter images that were
additionally smoothed with an isotropic gaussian kernel of 8 mm (full-
width-half-maximum). The seed voxels (hippocampal VOI) were, how-
ever, selected from resampled, modulated gray matter segments with no
further smoothing.

2.5.2. Resting-state functional connectivity analysis
For every participant, resting-state functional connectivity (RSFC)

was assessed for every session, by calculating the Pearson’s correlation
between time courses of seed voxels and target voxels, both extracted
from the preprocessed, smoothed resting-state scans of each session.
Then the FC matrices were averaged across the four sessions, within each
participant and were standardized using the Fisher’s Z-transformation.
By averaging the resulting z-scored, averaged FC-matrices across all
participants, one seed-by-target overall mean FC-matrix was created, for
each of the hippocampal VOIs (i.e. one pre hemisphere).

2.5.3. Task-based co-activation analysis
As an additional measure of functional interaction, or connectivity,

we characterized task-based co-activation profiles, between hippo-
campal seed voxels and the rest of the brain (cfs (Plachti et al., 2018)).
These co-activation profiles were investigated using seed-based acti-
vation likelihood estimation meta-analysis of functional neuroimaging
4

data stored in the BrainMap database (Laird et al. 2011)(http://www.bra
inmap.org). To account for spatial uncertainty, the nearest 100 experi-
ments reporting activation within each seed voxel or in its immediate
vicinity were considered. The brain-wide co-activation pattern for each
seed voxel was then computed by a quantitative meta-analysis, using the
revised ALE algorithm (Eickhoff et al. 2012), over the retrieved experi-
ments. This analysis resulted in one seed-by-target co-activation
matrix, for each of the hippocampal VOIs (i.e. one per hemisphere).

2.6. Gradient mapping

We utilized diffusion embedding, an unsupervised learning algo-
rithm, to identify principal modes of spatial variations in covariance
pattern across the entire of hippocampal voxels, per hemisphere. Briefly,
for each modality, the overall (per hemisphere) hippocampal connec-
tivity (covariance) matrix, was proportionally thresholded at 90% per
row, retaining only the top 10% correlations between each hippocampal
voxel and the target gray matter voxels. This sparse thresholded, asym-
metric covariance matrix was then transformed into a normalized angle
matrix (based on affinity matrix created based on cosine similarities,
resulting in a non-negative and symmetric similarity matrix. Then
diffusion map embedding, a one-parameter (α) family of graph Lap-
lacians that integrates local information into a global description, was
applied on this normalized angle matrix, to obtain a low-dimensional
representation of the covariance matrix, explaining the variance in
descending order (each of 1 � #VOI voxels). See Fig. 2 for schematic
representation of these steps. In line with previous neuroimaging studies,
e.g. (Bayrak et al., 2019; Margulies et al., 2016; Vos de Wael et al., 2018),
we used an α of 0.5, resulting in diffusion maps that retain the global
relations between data points in the embedded space and are more robust
to noise in the covariance matrix.

Voxels along each gradient map are assigned unitless embedding
values. Along each gradient (columns of the embedding matrix on the
right, in Fig. 2), voxels that share similar covariance pattern have similar
embedding values. For further details see (Margulies et al., 2016; Vos de
Wael et al., 2018).

2.7. Statistical analysis

2.7.1. Major gradients of structural covariance matrix and their between-
sample replicability

In order to assess between-sample replicability of major modes of
variation in the structural covariance across the hippocampal voxels, the
structural covariance maps were generated, as mentioned earlier, for the
HCP and eNKI datasets separately, and the diffusion map embedding
algorithm was then applied for each VOI, on each sample’s affinity
matrix. The resulting gradient maps were ordered according to the
explained variance,within each dataset. We then assessed similarity of
the distribution of the gradients across the datasets, by calculating
spatial Spearman’s rank correlations between pairs of gradients
derived from the two datasets. As the sign of the gradients are arbi-
trary, for all correlations, we report only the absolute coefficients.

2.7.2. Exploring the relation between hippocampal structural gradients and
functional gradients

To explore the association between the major modes of structural
covariance variation and hippocampal local microstructural properties,
the T1wT2w-ratio maps were masked using the VOI mask of each hip-
pocampus and the distribution of the values within each hemisphere
were correlated with the distribution of the values for each gradient
separately, using Spearman’s rank correlations.

To characterize the influence of cytoarchitectonic differentiations on
the patterns of structural covariance gradients, we used the Jülich
cytoarchitectonic atlas (https://jubrain.fz-juelich.de/apps/cytoviewer/
cytoviewer-main.php#), released as part of FSL-package and compared
the distribution of the gradient values between its main subdivisions

http://neuro.imm.dtu.dk/wiki/Harvard-Oxford_Atlas
http://www.brainmap.org
http://www.brainmap.org
https://jubrain.fz-juelich.de/apps/cytoviewer/cytoviewer-main.php#
https://jubrain.fz-juelich.de/apps/cytoviewer/cytoviewer-main.php#


Fig. 2. Schematic description of the analysis steps. λ : eigen values of the transition matrix: G : gradient:
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using Wilcoxon-Mann-Whitney-tests (significance was set at p-value <

0.0002, correcting for multiple comparison for the four gradients and
three subdivisions using Bonferroni correction). For this, we masked the
hippocampus, within each hemisphere, using the cornu-ammonis (CA),
dentate gyrus and subiculum masks. Distribution of the gradient
values of the voxels belonging to each of the masked subregions are
then compared with each other to investigate the possible impact of
cytoarchitectonic differentiations on the generation of the observed
pattern of structural covariance of the hippocampus.

3. Results

3.1. Gradients of hippocampal structural covariance and their between
sample replicability

The spatial distributions of the first four gradients of the structural
connectivity within the HCP cohort are presented in Fig. 3 and Supple-
mentary Figure 1. In total, these four principal gradients explained more
than 55% of variance of the data in each hemisphere (left: 55%; right:
58%) and corresponded to the clearest elbow in the scree plot (Fig. 3).

The first gradient of structural covariance (G1SC), which explained
more than 20% of the variance (left: 20%; right: 24%) showed an
Fig. 3. A: Spatial maps of the first two principle gradients of the structural covariance
Opposite ends of the colormap, depict voxels with the most distinct pattern of structu
embedding components (left and right hemisphere). For each hemisphere the scatte
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anterior-posterior organization along the longitudinal axis of the hip-
pocampus. The second gradient (G2SC) depicted a general dorsal-ventral
and partly medio-lateral gradient pattern, explaining 16% of variance, in
each hemisphere (Fig. 3). Finally, the third and fourth gradients of
structural covariance (G3SC and G4SC), each explaining~10% of variance
(G3SC: left: 12%; right: 10%; G4SC: left: 7%; right: 8%) showed a mixed
pattern of differentiation along the longitudinal direction but also in the
orthogonal directions, in the medio-lateral and dorsal-ventral directions,
respectively (Supplementary Figure 1).

To confirm that these organizational patterns of the structural
covariance were not sample specific, we ran the same approach on 468
participants of the eNKI sample, which covers a larger age-range than the
HCP participants. Fig. 4 demonstrates the spatial correlation of the first
four gradients of the two datasets. Accordingly, in both hemispheres the
first gradient of the eNKI cohort also demonstrated an anterior-posterior
organization and had a high spatial correspondence (rho> 0.7), showing
similar organization of the voxels in the first principal gradient along the
longitudinal axis of the hippocampus, as compared to the HCP sample. In
this dataset, the principal gradient explained 16% and 18% of variance in
the left and right hemisphere, respectively.

Further examinations of the similarity of the organization of the
voxels in the subsequent gradients in the eNKI dataset suggested high
of the hippocampus. For better visualization, colormaps show ranked gradients.
ral covariance with the rest of the brain. B: Variance explained by the diffusion-
r plot of the first two connectivity embedding gradients are also shown.



Fig. 4. Absolute spearman’s rank correlation coefficient (ρ) between corresponding diffusion-embedding components from structural covariance maps derived within
the HCP (columns) and eNKI (rows) sample. G: gradient; SC: structural covariance.
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correlation (rho> 0.63) with the same ordering of the HCP dataset in the
left hemisphere. In the right hemisphere, while the forth gradient of the
eNKI sample correlated mostly with the forth gradient (G4SC) of the HCP
sample, the second and third gradients showed a more mixed spatial
patterns, correlating with both G2SC and G3SC in the HCP cohort (rho >

0.38). In addition, in both, the left and right hemisphere, the first and
second gradients from the eNKI cohort also correlated moderately (rho>

0.3) with G2SC from the HCP cohort. Similarly to what we observed in the
HCP dataset, within the eNKI sample, the first four gradients, captured
more than 50% of the variance (left hemisphere: 15%, 14%, 7%; right
hemisphere: 17%, 12%, 7%, demonstrating the variance explained by the
second, third and fourth components, respectively).

So, in sum, in both datasets, more than 50% of the SC pattern can be
summarized into four gradients whose spatial patterns are replicable
across both datasets. In the right hemisphere, the second and third gra-
dients did not show a clear one to one mapping between cohorts sug-
gesting that these two gradients could differently vary across different
datasets, but in the left hemisphere, a relative one to one correspondence
could be evidenced.

3.2. Highly similar functional and structural main organizational patterns
in the hippocampus

To investigate the similarity of the organizational patterns of the
hippocampal voxels based on structural covariance with the organiza-
tional patterns of the hippocampal voxels based on functional connec-
tivity, we utilized two independent measures of functional connectivity:
RSFC and meta-analytic task-based co-activation. As Fig. 5 shows, the
first gradient of the structural covariance (G1SC) from the HCP cohort
correlated strongly with the principal gradient of both functional mo-
dalities (G1RSFC rho¼ 0.7 and 0.79; Co-activation rho¼ 0.58 and 0.73, in
the left and right hemisphere, respectively). This main functional
gradient, just like the G1SC, exhibited a dominant anterior-posterior or-
ganization (see Supplementary Figure 2) and explained ~30% of vari-
ance in either hemisphere in both functional modalities. In general, these
results demonstrate the existence of a general smooth transition along the
longitudinal hippocampal axis, that represent the major mode of varia-
tion in hippocampal structural and functional covariance/connectivity
patterns.

The first and third gradients of task-based co-activations further
showed moderate association with the third gradient of structural
covariance (G3SC) (rho ~ 0.4), in both hemispheres, suggesting a partial
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pattern of medial-lateral gradient in the major modes of variability of
task-based co-activations. The other gradients of either of the func-
tional data did not show consistently strong (i.e. similarly strong in both
hemispheres) pattern of spatial association with the remaining structural
gradients.

3.3. Relationships of hippocampal structural gradients with estimates of
microstructure and cytoarchitectonic organization

The spatial maps of the distribution patterns of T1wT2w-ratio (used
to estimate myelin) in the bilateral hippocampus showed moderate as-
sociation (rho > 0.34) with the second gradient of structural covariance
(G2SC), in the HCP cohort (see Supplementary Figure 3 for spatial maps of
the distribution patterns of T1wT2w-ratio). In addition, within the left
hemisphere, T1wT2w-ratio also spatially correlated with G1SC (rho ¼
0.36).

Further subdividing the hippocampus into broad cytoarchitectonic
territories, using the subregions cornu-ammonis (CA) and subiculum
showed a tendency towards a consistent (i.e. in both hemispheres)
pattern of higher gradient values in the CA field, compared to the sub-
iculum region, in the second gradient of the structural covariance (G2SC)
(p-value of the Mann-Whitney U tests in both hemispheres < 10�5

(Fig. 6). Of note, to avoid biased conclusions, due to relatively smaller
size of the dentate gyrus compared to CA field (~11 times) and sub-
iculum (~6 times), Fig. 6 only presents the results of comparison be-
tween CA and subiculum subfields. Comparison across all the three sub-
regions are shown in the supplementary Figure 4.

These results suggest that, unlike the principal anterior-posterior
structural covariance gradient that could be more associated with
system-level interactions of the hippocampus with the rest of the brain,
the second major mode of variation in the structural covariance of the
hippocampus is more tightly linked to its local microstructural
properties.

4. Discussion

In the current work, we investigated hippocampal structural organi-
zation, in terms of its co-plasticity patterns with the rest of the brain. We
found that the main principal dimension of the structural covariance in
the hippocampus depicts an anterior-posterior gradient hence suggesting
that the predominant pattern of co-plasticity with the rest of the brain
follows a smooth change across the hippocampal longitudinal axis. We



Fig. 5. A: Absolute spearman’s rank correlation coefficient (ρ) between corresponding diffusion-embedding components from the functional connectivity measures
(rows) and structural covariance maps (columns) derived within the HCP cohort. B: Association between spatial distribution of T1wT2w-ratio values and the major
four gradients of structural covariance in the HCP cohort, defined using spearman’s rank correlation. Darker colors represent stronger associations. . G: gradient; SC:
structural covariance; RSFC: resting state functional connectivity; MACM: meta-analytic connectivity modelling; T1w: T1-weighted scan; T2w: T2-weighted scan.
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demonstrated the high replicability of this organizational pattern in an
independent dataset, consisting of participants with a broader age range
hence confirming the generalizability of this main axis of co-plasticity
variation across datasets. A similar anterior-posterior organization has
been very recently shown as a major dimension of functional connec-
tivity change within the hippocampus (Prze�zdzik et al., 2019; Vos de
Wael et al., 2018). Here we replicated this finding using both,
resting-state and task-based functional connectivity/co-activation in-
formation and highlighted that a large proportion (~50%) of variance in
the principal structural gradient of the hippocampus could be explained
by this main pattern of functional configuration.

The examination of the subsequent structural gradients suggested a
very limited similarity of the second dimension of structural variations
and functional organization dimensions. Rather, the second major mode
of variation in the structural covariance of the hippocampus
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demonstrated a predominantly dorsal-ventral organization and was
bilaterally moderately associated with the spatial distribution of myelin
markers in the hippocampus, suggesting a partial link between this
organizational pattern and hippocampal innate microstructural proper-
ties. Below we discuss the integration of these findings with very recent
literature and emerging views in brain mapping, as well as the potential
limitations of our study.

4.1. Disentangling overlapping modes of structural covariance change for a
unifying model of hippocampal organization

Understanding the organizational patterns of the brain that subserve
information processing in health and explain behavioral phenotypes in
pathology are crucial open questions in systems and clinical neurosci-
ence. The study of brain organization is often complicated by evidence of



Fig. 6. Boxplots showing distribution of the gradient values within the CA and subiculum subfields, across the major four gradients of structural covariance in each
hemisphere; Significant difference is shown using * and shows p < 0.002 of the Wilcoxon-Mann-Whitney-test. SC: structural covariance; CA: cornu-ammonis;
G: gradient.
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multiple axes of organization that are found with respect to different
neurobiological properties (Eickhoff et al., 2018). For example, tradi-
tional mapping of the brain organization used local properties such as
myelo- and cytoarchitectonic information to characterize brain regions
and their relative organization (Hopf and Vitzthum, 1957; von Economo
and Koskinas, 1925). Recent advances in in-vivo neuroimaging has
expanded the scope of mapping brain organizational principles to the
study of network-level interactions and characterizing overlapping axes
of information processing and have hence revealed multiple organization
dimensions (see (Haak et al., 2018) and (Genon et al., 2018, 2017) for
recent examples, depicting such multiple dimensions of organization in
the visual and premotor cortices, respectively).
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The co-existence of these overlapping (i.e. spatially co-existing) and
yet, distinct (i.e. from their properties) organizational principles and the
interplay between them may give rise to the functional/behavioral
specifications of brain regions and determine distinct neurocognitive
patterns in pathologic conditions.

In particular, considering the hippocampal complex role in multiple
different behavioral domains, its distinct cytoarchitectonic properties, its
importance as a hub node in the human connectome and its involvement
in multiple disorders, understanding its multiple organizational princi-
ples, may provide novel insights towards a unifying model of the hip-
pocampus and its variabilities in health and disease. In the current study
we examined the change in the structural covariance patterns of the
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hippocampal voxels with the rest of the brain, to disentangle the different
dimensions of its structural organization.

Structural covariance, defined as coordinated change in the local
morphological properties between distinct pairs of brain regions across a
population, reflects long-range co-plasticity. Shared genetic influences,
direct structural connections (Yee et al., 2018), similarity of
micro-structural properties and coordinated growth (Alexander-Bloch
et al., 2013b), shared vulnerability towards toxic agents but also
co-activation and co-firing of neurons, all may shape the pattern of
structural co-plasticity of a given brain region. From this standpoint, the
study of structural covariance may provide unique information about the
interaction between these local and global factors and their relative
representations on hippocampal neuroimaging-derived macrostructural
properties.

4.2. The main dimension of structural covariance of the hippocampus map
onto the anterior-posterior functional differentiation

The major principal gradient of the structural covariance, running in
the anterior/posterior direction, explained more than 20% of variance in
the whole data and demonstrated a smooth transition pattern of struc-
tural co-plasticity across the longitudinal axis of the hippocampus. Our
investigation of the replicability of the principal dimensions of hippo-
campal structural covariance in an independent dataset confirmed the
sample-independence of this core finding. In other words, our results
demonstrated the existence of a generalizable strong organization prin-
ciple, governing hippocampal co-plastic patterns across its major longi-
tudinal axis, among healthy individuals.

Multiple lines of evidence pointed out the pattern of differentiation of
hippocampal properties along its longitudinal axis. In particular, a recent
study have determined a gradual pattern of gene expression along the
hippocampal longitudinal axis (Vogel et al., 2019). Similarly, associa-
tions with behavioral function, defined from task-activation meta--
analytic analysis, indicated an emotion-cognition gradient along the
anterior-posterior axis of the hippocampus, e.g. (Moser and Moser,
1998). However, the strongest support for the existence of an organiza-
tional principle along the hippocampal long-axis comes from its patterns
of connectivity with the rest of the brain. Indeed, anatomical projections
and electrophysiological recordings in rodent have demonstrated a
gradual variation in the connectivity patterns of the hippocampus along
the longitudinal axis (Strange et al., 2014). Similarly, in humans, using
resting-state functional connectivity analysis, it has been shown that the
large-scale functional interaction properties follow a dominant gradual
change across hippocampal longitudinal axis (Vos de Wael et al., 2018).
In the same line, our findings of strong spatial correlations between the
major gradient of the structural covariance and functional connectivity
analyses, suggest that the major organizational structural principle
within the hippocampus may be enforced through long-range functional
synchronous firing and task co-activation.

These findings can be related to the evidence of differential
involvement of the anterior and posterior hippocampus in different
neurodegenerative diseases (LaJoie et al., 2014b; Lee et al., 2017). In
particular, our findings can be related to the differential impact of
different pathologies, for example Amyloid/Tau pathology versus
TDP-43-pathies (Llad�o et al., 2018), in atrophy along the hippocampal
longitudinal axis and hence provide a system-level explanation for the
mechanisms underlying these pathologic changes and the related
behavioral phenotypes. For instance, while many studies have shown
local atrophy within the hippocampus, in both Alzheimer’s disease and
semantic dementia, it is known that the behavioral phenotype differ to a
relatively large extent between these two diseases, with episodic memory
being mainly impaired in the former. (LaJoie et al., 2014a). interpreted
the differential behavioral outcomes linked to hippocampal changes in
terms of the variabilities of global functional interactions of the hippo-
campus within distinct large-scale networks in the two diseases. Similar
complementary interpretations were found when considering the local
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hypermetabolism along the hippocampal longitudinal axis, that were
linked to differential network-level interactions and hence were associ-
ated with different behavioral symptoms among patients with depression
compared to schizophrenic patients (Small et al., 2011). These findings
provide evidence that specific aspects of local structural variations in the
hippocampus are explained through the study of hippocampal global
interactions, opening doors towards the identification of mechanistic
biomarkers differentiating patients’ specific profile across the disease
spectrum.

4.3. Linking additional dimensions of hippocampal structural covariance to
local structural properties

The local microstructural properties of the hippocampus, unlike the
distribution of its functional interaction and behavioral associations, do
not predominantly differentiate along the anterior/posterior axis (DeK-
raker et al., 2019). Instead, the distinctions within the hippocampus
based on the histological findings have been mainly defined across the
dorsal-ventral and medial-lateral direction (proximal-distal axis),
showing mainly that the structural properties of the hippocampus
differentiate roughly orthogonal to its longitudinal axis and allowing the
definition of subfields.

As a major principal organizational rule of the hippocampus, we ex-
pected to find an impact of the variations in these local structural prop-
erties in the structural covariance gradients. Accordingly, we found a
moderate association between the spatial distributions of T1wT2w ratio,
a proxy marker of myelin density, and the second gradient from the
structural covariance data, in both hemispheres. These moderate asso-
ciations suggests a link between the second dimension of macro-
structural organization and the hippocampal internal circuitry (Augus-
tinack et al., 2010; Zeineh et al., 2017). Linking the crude cytoarchitec-
tonic differentiations to gradients from the structural covariance also
showed a tendency in the CA subfield and subiculum to load on opposite
ends of the second gradient. Since proximity in the gradient space reflects
the similarity of the patterns of structural covariance, these findings
suggest that, in the secondmainmode of structural covariance, the voxels
in the CA show in general a distinct pattern of covariance with other gray
matter voxels than the patterns shown by the voxels within the Sub-
iculum. Although caution should be taken when interpreting these
findings, due to the wide range of the values within each subfield,
the trend in difference between subfields is congruent with our recent
clustering of hippocampus’ voxels based on their structural covariance
pattern in healthy adults (Plachti et al., 2018). Indeed, applying a clus-
tering algorithm to cluster hippocampus voxels based on the similarity of
their brain co-plasticity pattern reveal a differentiation within the hip-
pocampus body and tail that resembles the CA vs. Subiculum differen-
tiation. Thus, altogether, the results of our previous clustering study
together with the results of the current study suggest the partial influence
of underlying microstructural properties in the pattern of structural
covariance of hippocampus’ voxels.

The distribution of in-vivo markers of myelin are shown to demon-
strate differences across hippocampal subfields, with the highest levels of
myelin concentrations being found in the subiculum (DeKraker et al.,
2018; Patel et al., 2019; Vos de Wael et al., 2018). The elevated myelin
estimate within this subfield could be assumed to party result from the
perforant path, passing through the subiculum, conceptually linking
myelin distribution to subfield boundaries (DeKraker et al., 2018).

Finally, further dimensions of structural covariance, despite their
general high degree of cross-sample replicability, did not show stable
association with the functional gradients. Furthermore, their associations
with the distribution of T1wT2w-ratio in the whole hippocampus and the
atlas-defined cytoarchitectonic differentiations were also negligible.
Altogether, these lack of associations suggest that these second-order
dimensions cannot be characterized by our current estimates of myelin
and a crude cytoarchitectonic differentiation. This could be related to
the limited neurobiological validity of our estimates and/or to
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associations with unexplored neurobiological features. The possible
methodological limitations of our study are further discussed
below.

4.4. Challenges in linking patterns of structural covariance to local
structural properties

An important aspect of the structural covariance analysis is the group-
wise nature of the analysis, in which the covariance pattern of each voxel
is defined based on correlation of morphological properties with the rest
of the brain across a group of participants. Therefore, it requires the same
definition of voxels across all participants of the cohort. Accordingly, to
achieve such cross-individual correspondence, the structural images are
preprocessed and registered to a common template, where gray matter
volumes are defined within the same voxel on the template image for
each individual. The procedure of registering single participant’s struc-
tural data to the template involves multiple linear and non-linear de-
formations and thus can result in considerable inaccuracies, in particular
when considering distinctions between small sub-regions within the
hippocampus. Such inaccuracies should be considered in the identifica-
tion of the subfields and their deformation from histological scans to the
MNI template space. The cumulative impact of these deformation and
registration inaccuracies, can in turn disguise the impact of the under-
lying cytoarchitectonic properties in the computation of separate di-
mensions of large-scale structural covariance patterns. To overcome this
limitation, some studies used a subject-wise estimate of the subfields,
derived from automatic classifications of the structural (T1w and T2w
MRI) scans that are already registered to the template space, e.g. (Vos de
Wael et al., 2018). However, due to possible inter-individual differences
in the shape and size of the subfields, these algorithms are followed by
further reparameterizations to improve correspondence of voxels across
subjects, which can result in similar inaccuracies, particularly for struc-
tural covariance analysis, where the correlations are assessed as a result
of group-level variations.

Additionally, linking the microstructural properties to the major
modes of structural covariance variation is limited by the restricted
neurobiological validity of the T1wT2w-ratio as an in-vivo marker of
myelin (Arshad et al., 2017; Hagiwara et al., 2018; Uddin et al., 2018).
The use of more direct and quantitative in-vivo correlates of myelin
(Weiskopf et al., 2013) and even combination of multiple modalities
(such as additional use of markers of white matter integrity and myelin
density from diffusion MRI scans (Patel et al., 2019)) may provide more
detailed information about how the underlying micro-structural vari-
abilities are represented and possibly shape the macro-structural
co-plasticity and co-atrophy patterns of the hippocampal voxels. These
scientific developments could in turn help to explain the specific aspects
of local vulnerability of the hippocampus in pathologic conditions.

4.5. Conclusions and future perspectives

The current study aimed to disentangle the major modes of variation
in the similarity of hippocampal voxels in terms of their co-plastic
properties. Here we demonstrated that using a data-driven decomposi-
tion approach, the major modes of variation of the structural covariance
patterns could be identified reliably across independent datasets with
different age ranges. This replicability allows us to assume that the major
dimensions shown in this study reflect generalizable patterns and are
caused by general principles governing hippocampus’ organization.

In this regard we showed that the principal component of the struc-
tural covariance followed the hippocampal longitudinal axis, depicting a
smooth gradient running from the head to the tail and hence suggesting a
smooth transition in the covariance patterns along this axis. The spatial
pattern depicted by this gradient correlated highly with the major
gradient of the functional connectivity analysis, suggesting an influence
of global connectivity and co-firing in the realization of the main mode of
variation in the structural covariance patterns in the hippocampus. In
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contrast, the second gradient of structural covariance ran in the orthog-
onal direction mainly along the dorsal-ventral side and was moderately
associated with hippocampal microstructural properties and cytoarchi-
tectonic differentiation.

Considering the multi-faceted nature of the structural covariance in-
formation, further research incorporating more local and global com-
plementary information, including gene expression patterns (Vogel et al.,
2019), global white-matter connectivity patterns (Maller et al., 2019)
and more quantitative measures of local micro-structural properties
(Menon et al., 2019; Weiskopf et al., 2013) can help to further under-
stand the underlying organizational forces generating different co-plastic
modes in health and to characterize the vulnerability patterns between
and within different pathologic conditions.
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